Issue 7, 2023

Tough polyurethane elastomers with high strength and rapid healing ability

Abstract

Polymers are often susceptible to premature failure due to various physical damages. Incorporation of reversible disulfide bonds with sufficient chain diffusion in polyurethane (PU) elastomers endows them with good healable and recyclable properties, effectively prolonging their service life. However, such healable elastomers frequently exhibit poor toughness and strength. Here, a series of disulfide-containing linear poly(urea-urethane)s are facilely fabricated using 4,4′-dithiodianiline (DTDA) and adipic acid dihydrazide (AD) as chain extenders. The produced elastomer with hierarchical hydrogen bonds has a high tensile strength (60.24 MPa), strain (1489.2%) and toughness (257.24 MJ m−3), respectively. Within only 5 h, isopropyl alcohol-assisted healing at 30 °C partially regains tensile strength (44.4 MPa), strain (1254.4%) and toughness (179.52 MJ m−3). The combination of hierarchical hydrogen bonds and disulfide bonds allows the achieved elastomer to maintain high mechanical properties and a healing efficiency of approximately 80%. This study facilitates the design and fabrication of PU elastomers with high mechanical performance and healing efficiency.

Graphical abstract: Tough polyurethane elastomers with high strength and rapid healing ability

Supplementary files

Article information

Article type
Paper
Submitted
08 Nov 2022
Accepted
04 Mar 2023
First published
08 Mar 2023
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2023,4, 1711-1719

Tough polyurethane elastomers with high strength and rapid healing ability

C. Qiao, X. Jian, Z. Gao, Q. Ban, X. Zhang, H. Wang and Y. Zheng, Mater. Adv., 2023, 4, 1711 DOI: 10.1039/D2MA01021F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements