Issue 20, 2023

In situ polymerized PEDOT dispersions with sulfated cellulose nanofibrils for 1D and 2D conductors

Abstract

Sulfated cellulose nanofibrils (SCNFs, 1.7 ± 0.7 nm high, 3.6 ± 0.9 nm wide, 880 ± 320 nm long) with 1.81 mmol g−1 surface charge or ca. 84% C6 sulfation have shown to be effective co-polyelectrolytes with poly(styrene sulfonate) (PSS) in the synthesis of poly(3,4-ethylenedioxythophene) (PEDOT). Stable aqueous dispersions of PEDOT:PSS/SCNF were synthesized with up to 50 wt% PEDOT fractions in the presence of any combination of SCNF and/or PSS as co-polyelectrolytes. The closely matched spacing between the SCNF anionic groups and PEDOT cationic groups facilitated the alignment of PEDOT along the surface of nanofibrils to enhance conductivity of 2D cast films and 1D wet spun fibers to 0.14 S cm−1 and 40 S cm−1, respectively. Ethylene Glycol (EG) further acted on the PSS in the PEDOT:PSS/SCNF complexes to improve the conductivity of films to a maximum of 37.5 S cm−1 and that of fibers to 6150 S cm−1. Most impressively, wet spinning PEDOT:PSS/SCNF with 30% SCNF in the polyanions directly into 72% sulfuric acid yielded fibers with an even higher conductivity of 15 500 ± 3500 S cm−1.

Graphical abstract: In situ polymerized PEDOT dispersions with sulfated cellulose nanofibrils for 1D and 2D conductors

Supplementary files

Article information

Article type
Paper
Submitted
31 Jul 2023
Accepted
20 Sep 2023
First published
27 Sep 2023
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2023,4, 4912-4920

In situ polymerized PEDOT dispersions with sulfated cellulose nanofibrils for 1D and 2D conductors

B. Pingrey and Y. Hsieh, Mater. Adv., 2023, 4, 4912 DOI: 10.1039/D3MA00486D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements