3D printing programmable liquid crystal elastomer soft pneumatic actuators†
Abstract
Soft pneumatic actuators (SPAs) rely on anisotropic mechanical properties to generate specific motions after inflation. To achieve mechanical anisotropy, additional stiff materials or heterogeneous structures are typically introduced in isotropic base materials. However, the inherent limitations of these strategies may lead to potential interfacial problems or inefficient material usage. Herein, we develop a new strategy for fabricating SPAs based on an aligned liquid crystal elastomer (LCE) by a modified 3D printing technology. A rotating substrate enables the one-step fabrication of tubular LCE-SPAs with designed alignments in three dimensions. The alignment can be precisely programmed through printing, resulting in intrinsic mechanical anisotropy of the LCE. With a specially designed alignment, LCE-SPAs can achieve basic motions—contraction, elongation, bending, and twisting—and accomplish diverse tasks, e.g., grabbing objects and mixing water. This study provides a new perspective for the design and fabrication of SPAs.