Issue 4, 2023

Surface engineering of colloidal nanoparticles

Abstract

Synthesis of engineered colloidal nanoparticles (NPs) with delicate surface characteristics leads to well-defined physicochemical properties and contributes to multifunctional applications. Surface engineering of colloidal NPs can improve their stability in diverse solvents by inhibiting the interparticle attractive forces, thus providing a prerequisite for further particle manipulation, fabrication of the following materials and biological applications. During the last decades, surface engineering methods for colloidal NPs have been well-developed by numerous researchers. However, accurate control of surface properties is still an important topic. The emerging DNA/protein nanotechnology offers additional possibility of surface modification of NPs and programmable particle self-assembly. Here, we first briefly review the recent progress in surface engineering of colloidal NPs, focusing on the improved stability by grafting suitable small molecules, polymers or biological macromolecules. We then present the practical strategies for nucleic acid surface encoding of NPs and subsequent programmable assembly. Various exciting applications of these unique materials are summarized with a specific focus on the cellular uptake, bio-toxicity, imaging and diagnosis of colloidal NPs in vivo. With the growing interest in colloidal NPs in nano-biological research, we expect that this review can play an instructive role in engineering the surface properties for desired applications.

Graphical abstract: Surface engineering of colloidal nanoparticles

Article information

Article type
Review Article
Submitted
12 Dec 2022
Accepted
16 Jan 2023
First published
20 Jan 2023

Mater. Horiz., 2023,10, 1185-1209

Surface engineering of colloidal nanoparticles

X. Jing, Y. Zhang, M. Li, X. Zuo, C. Fan and J. Zheng, Mater. Horiz., 2023, 10, 1185 DOI: 10.1039/D2MH01512A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements