A dual-locked triarylamine donor enables high-performance deep-red/NIR thermally activated delayed fluorescence organic light-emitting diodes†
Abstract
Deep-red/near-infrared (DR/NIR) organic light-emitting diodes (OLEDs) have attracted a great deal of attention due to their widespread application fields, such as night-vision devices, optical communication, and information-secured displays. However, most DR/NIR OLEDs show low electroluminescence efficiencies, hampering their applications. Herein, we constructed a high-performance DR/NIR thermally activated delayed fluorescence (TADF) emitter based on an advanced dual-locked triarylamine donor (D) unit. Promisingly, such a novel D segment brings numerous advantages: a larger stereoscopic architecture, an enhanced electron-donating ability, and a stiffer molecular structure. In view of these features, the newly developed emitter DCN-DSP shows redshifted emission, a narrowed ΔEST, an enhanced PLQY value and aggregation-induced emission (AIE) properties, which allows for effectively alleviating concentration quenching compared to the control compound using a conventional triarylamine derivative as D units. The DCN-DSP-based OLEDs with modulated doping concentrations exhibit champion EQEs of 36.2% at 660 nm, 26.1% at 676 nm and 21.3% at 716 nm, which are record-high efficiencies among all TADF OLEDs in the similar emission ranges. This work realizes the efficiency breakthrough of DR/NIR TADF OLEDs, and such a promising molecular design approach may inspire even better DR/NIR TADF emitters in the future.