Chirality and dislocation effects in single nanostructures probed by whispering gallery modes†
Abstract
Nanostructures such as nanoribbons and -wires are of interest as components for building integrated photonic systems, especially if their basic functionality as dielectric waveguides can be extended by chiroptical phenomena or modifications of their optoelectronic properties by extended defects, such as dislocations. However, conventional optical measurements typically require monodisperse (and chiral) ensembles, and identifying emerging chiral optical activity or dislocation effects in single nanostructures has remained an unmet challenge. Here we show that whispering gallery modes can probe chirality and dislocation effects in single nanowires. Wires of the van der Waals semiconductor germanium(II) sulfide (GeS), obtained by vapor–liquid–solid growth, invariably form as growth spirals around a single screw dislocation that gives rise to a chiral structure and can modify the electronic properties. Cathodoluminescence spectroscopy on single tapered GeS nanowires containing joined dislocated and defect-free segments, augmented by numerical simulations and ab-initio calculations, identifies chiral whispering gallery modes as well as a pronounced modulation of the electronic structure attributed to the screw dislocation. Our results establish chiral light-matter interactions and dislocation-induced electronic modifications in single nanostructures, paving the way for their application in multifunctional photonic architectures.