(LaCrO3)m/SrCrO3 superlattices as transparent p-type semiconductors with finite magnetization†
Abstract
The electronic and magnetic properties of (LaCrO3)m/SrCrO3 superlattices are investigated using first principles calculations. We show that the magnetic moments in the two CrO2 layers sandwiching the SrO layer compensate each other for even m but give rise to a finite magnetization for odd m, which is explained by charge ordering with Cr3+ and Cr4+ ions arranged in a checkerboard pattern. The Cr4+ ions induce in-gap hole states at the interface, implying that the transparent superlattices are p-type semiconductors. The availability of transparent p-type semiconductors with finite magnetization enables the fabrication of transparent magnetic diodes and transistors, for example, with a multitude of potential technological applications.