Issue 3, 2023

Mechanical tough and multicolor aggregation-induced emissive polymeric hydrogels for fluorescent patterning

Abstract

Aggregation-induced emissive fluorogens (AIEgens) are promising building blocks for fluorescent polymeric hydrogels (FPHs) because intense fluorescence intensities are usually guaranteed by spontaneous aggregates of hydrophobic AIEgens in a hydrophilic polymer network. However, most AIE-active FPHs are single-color fluorescent and cannot display tunable emission colors. Additionally, efforts to produce mechanically strong AIE-active hydrogels have been largely ignored, restricting their potential uses. Herein, we present the synthesis of an AIE-active methyl picolinate-substituted 1,8-naphthalimide monomer (MP-NI) for fabricating mechanical tough and multicolor FPHs. Owing to the introduction of bulky and coordinative methyl picolinate group, these specially designed MP-NI molecules were forced to adopt propeller-shaped conformation that renders them with intense aggregation-induced blue emission. Moreover, the MP-NI moieties grafted in a hydrogel matrix can sensitize red and green fluorescence of Eu3+and Tb3+via antenna effect. Consequently, multicolor fluorescent hydrogels that sustain a high stress of 1 MPa were obtained by chemically introducing MP-NI moieties into dually cross-linked alginate polymer networks with high-density metal (Ca2+/Tb3+/Eu3+) coordination and hydrogen bonding crosslinks. Their capacity to enable the writing of arbitrary multicolor fluorescent patterns using Eu3+/Tb3+ as inks were finally demonstrated, suggesting their potential uses for smart display and information encryption.

Graphical abstract: Mechanical tough and multicolor aggregation-induced emissive polymeric hydrogels for fluorescent patterning

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2022
Accepted
13 Dec 2022
First published
14 Dec 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 725-732

Mechanical tough and multicolor aggregation-induced emissive polymeric hydrogels for fluorescent patterning

Y. Zhang, R. Wang, W. Lu, W. Li, S. Chen and T. Chen, Nanoscale Adv., 2023, 5, 725 DOI: 10.1039/D2NA00757F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements