Issue 9, 2023

One-pot synthesis of gamma-graphyne supported Pd nanoparticles with high catalytic activity

Abstract

As a unique member of the graphyne family, gamma-graphyne (γ-graphyne) is a novel kind of 2D carbon allotrope with potential high carrier mobility and large surface area. It remains a great challenge to synthesize graphynes with targeted topologies and good performance. Herein, a novel one-pot method was applied to the synthesis of γ-graphyne using hexabromobenzene and acetylenedicarboxylic acid via a Pd-catalyzed decarboxylative coupling reaction, which is easy to perform with mild reaction conditions, facilitating the possibility of mass production. As a result, the synthesized γ-graphyne reveals a two-dimensional γ-graphyne structure consisting of 1 : 1 sp/sp2 hybridized carbon atoms. Furthermore, γ-graphyne as a carrier for Pd (Pd/γ-graphyne) displayed a superior catalytic activity for the reduction of 4-nitrophenol with a short reaction time and high yields, even in aqueous media under aerobic conditions. Compared with Pd/GO, Pd/HGO, Pd/CNT, and commercial Pd/C, Pd/γ-graphyne showed more excellent catalytic performance with lower palladium loadings. Thus we expect that the novel approach for the synthesis of γ-graphyne will boost research on the design and application of graphyne-type functional materials for catalysis.

Graphical abstract: One-pot synthesis of gamma-graphyne supported Pd nanoparticles with high catalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2023
Accepted
20 Mar 2023
First published
24 Mar 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 2487-2492

One-pot synthesis of gamma-graphyne supported Pd nanoparticles with high catalytic activity

S. He, B. Wu, Z. Xia, P. Guo, Y. Li and S. Song, Nanoscale Adv., 2023, 5, 2487 DOI: 10.1039/D3NA00096F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements