Issue 20, 2023

A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species

Abstract

Radioactive cesium (Cs) is a significant concern due to its role as a major byproduct of nuclear fission and its potential for radioactive contamination. Internal contamination with radioactive Cs is characterized by immoderate production of reactive oxygen species (ROS), resulting in severe radiation damage. Therefore, the development of therapeutic strategies should focus on enhancing the excretion of radioactive Cs and reducing radiation-induced oxidative damage. However, current therapeutic drugs like Prussian blue (PB) have limited efficacy in addressing these issues. In this study, we present Cu3[Fe(CN)6]2 (CuFe) nanoparticles, a Prussian blue analog (PBA), which can not only efficiently sequester Cs but also exhibit resistance against radiation damage. The results of the adsorption studies demonstrate that CuFe outperforms PB in terms of adsorption performance. Further mechanistic investigations indicate that the increased adsorption capacity of CuFe may be attributed to the presence of additional defects resulting from the [Fe(CN)6] missing linkers. Moreover, CuFe mimics the functions of catalase (CAT) and superoxide dismutase (SOD) by effectively eliminating O2˙ and H2O2 while scavenging ˙OH, thereby mitigating ROS induced by radiative Cs. Importantly, in vivo study confirms the efficient Cs decorporation capability of CuFe. The fecal cumulative excretion rate of CuFe reaches 69.5%, which is 1.45 times higher than that of PB (48.8%). These findings demonstrate that CuFe exhibits excellent Cs removal performance and ROS scavenging ability, making it an attractive candidate for the treatment of Cs contamination.

Graphical abstract: A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species

Supplementary files

Article information

Article type
Paper
Submitted
06 Jun 2023
Accepted
11 Sep 2023
First published
13 Sep 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 5661-5670

A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species

T. Xue, F. Liu, B. Lu, Q. Dong, B. Zhao, T. Chen, K. Zhang, J. Li and J. Du, Nanoscale Adv., 2023, 5, 5661 DOI: 10.1039/D3NA00388D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements