Issue 17, 2023

A Janus membrane doped with carbon nanotubes for wet–thermal management

Abstract

In a human skin–fibrous fabric–external environment, fibrous materials, as the “second skin” of the human body, provide comfort against the wet and heat effectively. Fibrous materials protect human health and guarantee work efficiency in various outdoor or inner scenes. Personal wet–thermal management based on fibrous materials can regulate comfort in a facile manner with low or zero energy consumption, which has become a potential development area. However, realizing synergistic management of the wet and heat effectively and conveniently is a challenge in the development and production of fibrous materials. We designed and fabricated a Janus fibrous membrane composed of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA)-modified hydrophobic cotton gauze and electrospun carbon nanotubes (CNTs)-doped cellulose acetate (CA) hydrophilic fibrous membrane. Taking advantage of asymmetric wettability along its thickness direction, the Janus fibrous membrane, acting as a “liquid diode”, could transport sweat/moisture from human skin to the external environment unidirectionally, which endowed a dry surface on human skin, avoiding “stickiness”, and realizing wet management. Doped CNTs had good photothermal-conversion capacity, so the Janus membrane exhibited excellent heating capacity for passive radiation, so excellent synergistic wet–thermal management was obtained. The Janus membrane could be a candidate for diverse applications of fibrous membranes. Our data provide new ideas for the design and fabrication of fibrous membranes with remarkable wet–thermal management.

Graphical abstract: A Janus membrane doped with carbon nanotubes for wet–thermal management

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2023
Accepted
26 Jul 2023
First published
26 Jul 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 4579-4588

A Janus membrane doped with carbon nanotubes for wet–thermal management

B. Tian, M. Hu, Y. Yang and J. Wu, Nanoscale Adv., 2023, 5, 4579 DOI: 10.1039/D3NA00398A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements