Issue 38, 2023

Fabrication of a nickel sulfide/nickel oxide heterostructure for efficient electrochemical oxidation of methanol

Abstract

As low-cost anode catalysts for the electrocatalytic oxidation of methanol, a nickel sulfide/nickel oxide (NiS/NiO) heterostructure deposited on Ni foam and its counterparts nickel sulfide (NiS) and nickel oxide (NiO) are presented in this study along with their synthesis, characterization, and electrochemical evaluation. With the use of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and Brauner–Emmett–Teller (BET) analysis, the synthesized NiS and NiO were analyzed. The NiS/NiO/Ni foam was found to be a highly efficient and stable electrocatalyst, which initiated the methanol oxidation reaction (MOR) at an amazingly low potential of 0.34 V vs. Ag/AgCl. The NiS/NiO electrocatalyst outperformed its counterparts (NiS and NiO) under the same electrochemical circumstances, offering a current density of 837 mA cm−2 at 0.6 V in 0.8 M methanol in alkaline media. The composite was studied further by varying NiS and NiO composite concentrations, methanol concentration, and the scan rate. Among the composites, NiS0.7/NiO0.3@Ni foam displayed the highest current density and lowest onset potential. The results were further validated using electrochemical impedance spectroscopy (EIS). It was discovered that NiS0.7/NiO0.3@Ni foam had the lowest charge transfer resistance among all the tested composite materials, as well as NiS and NiO. This innovation offers a desirable, highly effective, stable, and suitable non-noble metal electrocatalyst for methanol oxidation.

Graphical abstract: Fabrication of a nickel sulfide/nickel oxide heterostructure for efficient electrochemical oxidation of methanol

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2023
Accepted
01 Sep 2023
First published
04 Sep 2023

New J. Chem., 2023,47, 17970-17983

Fabrication of a nickel sulfide/nickel oxide heterostructure for efficient electrochemical oxidation of methanol

F. Sheikh, A. Arshad, F. Marriam, Z. Ahmad, A. Haider, M. Iqbal and M. A. Mansoor, New J. Chem., 2023, 47, 17970 DOI: 10.1039/D3NJ02855K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements