Issue 5, 2023

Significant enhancement of ferromagnetism above room temperature in epitaxial 2D van der Waals ferromagnet Fe5−δGeTe2/Bi2Te3 heterostructures

Abstract

Two-dimensional (2D) van der Waals (vdW) ferromagnetic metals FexGeTe2 with x = 3–5 have raised significant interest in the scientific community. Fe5GeTe2 shows prospects for spintronic applications since the Curie temperature Tc has been reported near or higher than 300 K. In the present work, epitaxial Fe5−δGeTe2 (FGT) heterostructures were grown by Molecular Beam Epitaxy (MBE) on insulating crystalline substrates. The FGT films were combined with Bi2Te3 topological insulator (TI) aiming to investigate the possible beneficial effect of the TI on the magnetic properties of FGT. FGT/Bi2Te3 films were compared to FGT capped only with AlOx to prevent oxidation. SQUID and MOKE measurements revealed that the growth of Bi2Te3 TI on FGT films significantly enhances the saturation magnetization of FGT as well as the Tc well above room temperature (RT) reaching record values of 570 K. First-principles calculations predict a shift of the Fermi level and an associated enhancement of the majority spin (primarily) as well as the total density of states at the Fermi level suggesting that effective doping of FGT from Bi2Te3 could explain the enhancement of ferromagnetism in FGT. It is also predicted that strain induced stabilization of a high magnetic moment phase in FGT/Bi2Te3 could be an alternative explanation of magnetization and Tc enhancement. Ferromagnetic resonance measurements evidence an enhanced broadening in the FGT/Bi2Te3 heterostructure when compared to FGT. We obtain a large spin mixing conductance of g↑↓eff = 4.4 × 1020 m−2, which demonstrates the great potential of FGT/Bi2Te3 systems for spin-charge conversion applications at room temperature.

Graphical abstract: Significant enhancement of ferromagnetism above room temperature in epitaxial 2D van der Waals ferromagnet Fe5−δGeTe2/Bi2Te3 heterostructures

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2022
Accepted
29 Dec 2022
First published
06 Jan 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2023,15, 2223-2233

Significant enhancement of ferromagnetism above room temperature in epitaxial 2D van der Waals ferromagnet Fe5−δGeTe2/Bi2Te3 heterostructures

E. Georgopoulou-Kotsaki, P. Pappas, A. Lintzeris, P. Tsipas, S. Fragkos, A. Markou, C. Felser, E. Longo, M. Fanciulli, R. Mantovan, F. Mahfouzi, N. Kioussis and A. Dimoulas, Nanoscale, 2023, 15, 2223 DOI: 10.1039/D2NR04820E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements