Issue 8, 2023

Exploring the design of superradiant J-aggregates from amphiphilic monomer units

Abstract

Excitonic chromophore aggregates have wide-ranging applicability in fields such as imaging and energy harvesting; however their rational design requires adapting principles of self-assembly to the requirements of excited state coupling. Using the well-studied amphiphilic cyanine dye C8S3 as a template—known to assemble into tubular excitonic aggregates—we synthesize several redshifted variants and study their self-assembly and photophysics. The new pentamethine dyes retain their tubular self-assembly and demonstrate nearly identical bathochromic shifts and lineshapes well into near-infrared wavelengths. However, detailed photophysical analysis finds that the new aggregates show a significant decline in superradiance. Additionally, cryo-TEM reveals that these aggregates readily form short bundles of nanotubes that have nearly half the radii of their trimethine comparators. We employ computational screening to gain intuition on how the structural components of these new aggregates affect their excitonic states, finding that the narrower tubes are able to assemble into a larger number of arrangements, resulting in more disordered aggregates (i.e. less superradiant) with highly similar degrees of redshift.

Graphical abstract: Exploring the design of superradiant J-aggregates from amphiphilic monomer units

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2022
Accepted
23 Jan 2023
First published
27 Jan 2023

Nanoscale, 2023,15, 3841-3849

Author version available

Exploring the design of superradiant J-aggregates from amphiphilic monomer units

A. D. Bailey, A. P. Deshmukh, N. C. Bradbury, M. Pengshung, T. L. Atallah, J. A. Williams, U. Barotov, D. Neuhauser, E. M. Sletten and J. R. Caram, Nanoscale, 2023, 15, 3841 DOI: 10.1039/D2NR05747F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements