Issue 3, 2023

Ion-mediated control of structural integrity and reconfigurability of DNA nanostructures

Abstract

Nucleic acid-based biomolecular self-assembly enables the creation of versatile functional architectures. Electrostatic screening of the negative charges of nucleic acids is essential for their folding and stability; thus, ions play a critical role in nucleic acid self-assembly in both biology and nanotechnology. However, the ion–DNA interplay and the resulting ion-specific structural integrity and responsiveness of DNA constructs are underexploited. Here, we harness a wide range of mono- and divalent ions to control the structural features of DNA origami constructs. Using atomic force microscopy and Förster resonance energy transfer (FRET) spectroscopy down to the single-molecule level, we report on the global and local structural performance and responsiveness of DNA origami constructs following self-assembly, upon post-assembly ion exchange and post-assembly ion-mediated reconfiguration. We determined the conditions for highly efficient DNA origami folding in the presence of several mono- (Li+, Na+, K+, Cs+) and divalent (Ca2+, Sr2+, Ba2+) ions, expanding the range where DNA origami structures can be exploited for custom-specific applications. We then manipulated fully folded constructs by exposing them to unfavorable ionic conditions that led to the emergence of substantial disintegrity but not to unfolding. Moreover, we found that poorly assembled nanostructures at low ion concentrations undergo substantial self-repair upon ion addition in the absence of free staple strands. This reconfigurability occurs in an ion type- and concentration-specific manner. Our findings provide a fundamental understanding of the ion-mediated structural responsiveness of DNA origami at the nanoscale enabling applications under a wide range of ionic conditions.

Graphical abstract: Ion-mediated control of structural integrity and reconfigurability of DNA nanostructures

Supplementary files

Article information

Article type
Paper
Submitted
18 Oct 2022
Accepted
07 Dec 2022
First published
08 Dec 2022

Nanoscale, 2023,15, 1317-1326

Ion-mediated control of structural integrity and reconfigurability of DNA nanostructures

A. Bednarz, S. M. Sønderskov, M. Dong and V. Birkedal, Nanoscale, 2023, 15, 1317 DOI: 10.1039/D2NR05780H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements