Issue 5, 2023

Growth pathways of exotic Cu@Au core@shell structures: the key role of misfit strain

Abstract

The CuAu system is characterized by a large lattice mismatch which causes a misfit strain in its core@shell architectures. Here we simulate the formation of Cu@Au core@shell nanoparticles by Au deposition on a preformed seed, and we study the effect of the shape and composition of the starting seed on the growth pathway. Three geometric shapes of the starting seed are considered: truncated octahedra, decahedra and icosahedra. For each shape, we consider two compositions, pure Cu and CuAu, at equicomposition and intermixed chemical ordering. Our results show that the shape and composition of the seed have significant effects on the growth pathways of Cu@Au core@shell nanoparticles. When starting with icosahedral seeds, the growing structure stays in that motif always. When starting with truncated octahedral and decahedral seeds, we have observed that there is a clear difference between the pure and intermixed seeds. For pure seeds, the growth often leads to exotic structures that are obtained after some structural transformations. For mixed seeds, the growth leads to quite regular structures resembling those obtained for pure metals. These growth pathways originate from strain relaxation mechanisms, which are rationalized by calculating the atomic level stress.

Graphical abstract: Growth pathways of exotic Cu@Au core@shell structures: the key role of misfit strain

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2022
Accepted
26 Dec 2022
First published
26 Dec 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2023,15, 2384-2393

Growth pathways of exotic Cu@Au core@shell structures: the key role of misfit strain

E. Y. El koraychy and R. Ferrando, Nanoscale, 2023, 15, 2384 DOI: 10.1039/D2NR05810C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements