Orientation order of a nonpolar molecular fluid compressed into a nanosmall space†
Abstract
The ordering structures of non-polar carbon tetrachloride liquid compressed to nano-scales between parallel substrates is studied in this work. The theoretical considerations show that the potential well formed by the confined parallel substrates induces orientational ordering of non-polar molecules. Through molecular dynamic (MD) simulations, the relations between various ordered structures of a non-polar liquid (carbon tetrachloride) and the confined gap size are demonstrated. The density distribution shows that the confinement does affect the ordering modes and induces an orientational ordering of molecules at the solid–liquid interface under extreme confinement conditions. This molecular orientation suggested from the theoretical model and MD simulation is directly supported by the experimental studies for the first time. The X-ray reflectivity data reveal a strong layering effect with splitting of the density profile in C and Cl-rich sublayers. The investigation shows that the liquid structure factor in confinement has a characteristic length similar to the short-range ordering in bulk, but the confined structure is strongly influenced by the surface potential and the interface properties. This introduces preferred molecular orientation and ordering which are not favorable in the bulk phase. As the orientational ordering is closely related to crystallization, our results provide a new perspective to control the crystallization in nano-confined space by compression.