Issue 8, 2023

Cationic vacancy engineering of p-TiO2 for enhanced photocatalytic nitrogen fixation

Abstract

Defect engineering is one of the effective strategies to regulate and control catalyst properties. Constructing appropriate catalytically active centers effectively tunes the electronic and surface properties of the catalyst to achieve further enrichment of photogenerated electrons, enhances the electronic feedback of the catalytically active center to the anti-bonding orbitals of the nitrogen molecule, and enhances N2 adsorption while weakening the N[triple bond, length as m-dash]N bond. In this study, titanium vacancy (VTi)-rich undoped anatase p-TiO2 was successfully synthesized to investigate the effect of its metal vacancies on photocatalytic nitrogen reduction reaction (NRR) performance. The cation vacancies of VTi-rich p-TiO2 lead to local charge defects that enhance carrier separation and transport while trapping electrons to activate N2, allowing effective reduction of the excited electrons to NH3. This work provides a viable strategy for driving the efficiency of photocatalytic nitrogen fixation processes by altering the structural properties of semiconductors through cationic vacancies, offering new opportunities and challenges for the design and preparation of titanium dioxide-based materials.

Graphical abstract: Cationic vacancy engineering of p-TiO2 for enhanced photocatalytic nitrogen fixation

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2022
Accepted
19 Jan 2023
First published
19 Jan 2023

Nanoscale, 2023,15, 4014-4021

Cationic vacancy engineering of p-TiO2 for enhanced photocatalytic nitrogen fixation

W. Ding, X. Li, S. Su, Z. Liu, Y. Cao, L. Meng, S. Yuan, W. Wei and M. Luo, Nanoscale, 2023, 15, 4014 DOI: 10.1039/D2NR06821D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements