Engineering 3D structure Mn/YTiOx nanotube catalyst with an efficient H2O and SO2 tolerance for low-temperature selective catalytic reduction of NO with NH3†
Abstract
TiO2 with a 3D structure is considered to be a promising support for Mn-based catalysts for the NH3-SCR reaction, but it is still insufficient to solve problems such as poor N2 selectivity and tolerance of H2O/SO2 at low temperature. In this work, a novel 3D-structured Mn/YTiOx nanotube catalyst was designed and the role of Y on the catalytic performance was investigated for the NH3-SCR reaction at low temperature. The results indicated that the Y-doped TiOx gradually transformed from nanotubes to nanosheets with the increase in Y doping, leading to a reduction in specific surface area and Brønsted acid sites. An appropriate amount of Y doping could distinctly improve the dispersion of MnOx and increase the concentration of surface Mn4+, Lewis acid sites and chemisorbed oxygen of catalysts, which was beneficial to the low-temperature NH3-SCR reaction, while excessive Y doping could cause a sharp decrease in specific surface area and Lewis acid sites. Therefore, Mn/YTiOx catalysts exhibited a volcano-type tendency in NO conversion with an increase in Y doping, and the highest activity was obtained at 3% doping, showing more than 90% NO conversion and N2 selectivity in a wide temperature window from 120 to 320 °C. The N2 selectivity and H2O/SO2 resistance of the catalysts was also enhanced with the increase in Y doping mainly due to the increased chemisorbed oxygen and electron transfer between Y and Mn. An in situ DRIFTS study demonstrated that Lewis acid sites played a more important role in the reaction than Brønsted acid sites, and the coordinated NH3 absorbed on Lewis acid sites, –NH2, monodentate nitrate and free nitrate ions were the main reactive intermediate species in the NH3-SCR reaction over an Mn/3%YTiOx catalyst. Langmuir–Hinshelwood (L–H) and Eley–Rideal (E–R) reaction mechanisms co-existed in the NH3-SCR reaction, but the L–H reaction mechanism predominated.