Issue 28, 2023

Periodic trends in the structural, electronic, and transport properties of electrenes

Abstract

Two-dimensional layered electrides are a class of atomically thin materials in which the anion is an excess electron rather than a negatively charged ion. These excess electrons form delocalized sheets of charge surrounding each layer of the material. A well-known example is Ca2N; its identification and characterization has triggered an avalanche of studies aimed at broadening applications of electrides. Ca2N is only one member of the M2X family of materials, with M being an alkaline-earth metal and X belonging to the pnictogen group, which can be exfoliated to form single- or few-layer electrenes. The goal of this study is to systematically investigate the monolayer and bilayer properties for this family of materials. Density-functional calculations reveal linear relationships between surface and interstitial charges, work functions, exfoliation energies, and Ewald energies. Using the Landauer formalism, informed by rigorous electron–phonon scattering calculations, we also investigate the electronic transport characteristics of the monolayer and bilayer electrenes. Our findings indicate that the nitrogen-based electrenes (Ca2N, Sr2N, and Ba2N) are more conductive than their counterparts involving heavier pnictogens. The results of this study highlight underlying periodic trends in electrene properties that can help identify which materials would be best suited for particular applications.

Graphical abstract: Periodic trends in the structural, electronic, and transport properties of electrenes

Supplementary files

Article information

Article type
Paper
Submitted
19 Jan 2023
Accepted
16 Jun 2023
First published
16 Jun 2023

Nanoscale, 2023,15, 12038-12047

Periodic trends in the structural, electronic, and transport properties of electrenes

M. Rafiee Diznab, E. R. Johnson and J. Maassen, Nanoscale, 2023, 15, 12038 DOI: 10.1039/D3NR00304C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements