Spectroscopic analyses of particle and energy aggregations at the interface of silver nanoparticles and fluorescent carbon nanodots†
Abstract
We study the change in the surface electromagnetic field provided by photoexcited silver nanoparticles as the field is disturbed by fluorescent carbon nanodots. Fluorescent carbon nanodots with an appropriate quantity and quality of surface functional groups are used to mediate the aggregation of silver nanoparticles of matching size and shape to form available nano-size conical structures. Carbon nanodots in the composite absorb and transfer additional photoenergy to the silver surface, resulting in energy aggregation within the cone structure and enhancement of the electromagnetic field in proximity to the silver surface. This elevated energy state is manifested in the strengthening of the SERS signal of the analytical probe 4-aminophenyl disulfide and the mechanism involved is elucidated by additional molecular spectroscopy studies.