Issue 34, 2023

Dielectric metasurface-assisted cavity ring-down spectroscopy for thin-film circular dichroism analysis

Abstract

Chiral molecules show differences in their chemical and optical properties due to the different spatial arrangements of the atoms in the two enantiomers. A common way to optically differentiate them is to detect the disparity in the absorption of light by the two enantiomers, i.e. absorption circular dichroism (CD). However, the CD of typical molecules is very small, limiting the sensitivity of chiroptical analysis based on CD. Cavity ring-down spectroscopy (CRDS) is a well-known ultrasensitive absorption spectroscopic method for low-absorbing gas-phase samples because the multiple reflections of light in the cavity greatly increase the absorption path. By inserting a prism into the cavity, the optical mode undergoes total internal reflection (TIR) at the prism surface and the evanescent wave (EW) enables the absorption detection of condensed-phase samples within a very thin layer near the prism surface, called EW-CRDS. Here, we propose an ultrasensitive chiral absorption spectroscopy platform using dielectric metasurface-assisted EW-CRDS. We theoretically show that, upon linearly polarized and oblique incidence, the metasurface exhibits minimum scattering and absorption loss, introduces negligible polarization change, and locally converts the linearly polarized light into near fields with finite optical chirality, enabling CD detection with EW-CRDS that typically works with linearly polarized light. We evaluate the ring-down time in the presence of chiral molecules and determine the sensitivity of the cavity as a function of total absorption from the molecules. The findings open the avenue for the ultrasensitive thin film detection of chiral molecules using CRDS techniques.

Graphical abstract: Dielectric metasurface-assisted cavity ring-down spectroscopy for thin-film circular dichroism analysis

Article information

Article type
Paper
Submitted
17 May 2023
Accepted
02 Aug 2023
First published
02 Aug 2023

Nanoscale, 2023,15, 14093-14099

Dielectric metasurface-assisted cavity ring-down spectroscopy for thin-film circular dichroism analysis

A. K. Singh, Z. Lin, M. Jiang, T. G. Mayerhöfer and J. Huang, Nanoscale, 2023, 15, 14093 DOI: 10.1039/D3NR02288A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements