Issue 28, 2023

Ultra-stable silver nanoplates: efficient and versatile colorimetric reporters for dipstick assays

Abstract

Noble metal anisotropic nanostructures, such as silver nanoplates (AgNPls), are interesting because they possess enhanced plasmonic properties compared to their spherical counterparts: increased extinction coefficient and tunable maximum of absorption wavelength. However, their use for biosensing application is limited as these structures are intrinsically unstable and, to maintain the anisotropic structure, a coating protecting the metallic surface is required. In this work, we report on the capacity of a thin but robust coating based on calixarene–diazonium salts to maintain the structure anisotropy of silver nanoplates in conditions in which traditionally used coatings fail. We synthesized AgNPls of various sizes and coated them with two different calixarenes, differing by the functional groups attached to their small rim. After characterization of the efficiency of the ligand exchange process between the initial citrate anions and the calixarenes, the chemical and colloidal stabilities of the resulting calixarene-coated AgNPls were compared to citrate-capped AgNPls. A radical improvement of the lifetime of the material from 1 day for AgNPls coated with citrate to more than 900 days for calixarene-coated AgNPls, as well as the stability in acidic conditions, phosphate saline buffer (PBS) or biofluid, were observed. Benefiting from this exceptional robustness, calixarene-coated AgNPls were exploited to design dipstick assays. Rabbit immunoglobulin G (IgG) detection was developed first as proof-of-concept. The optimal system was then used for the detection of Anti-SARS-CoV-2 IgG. In both cases, a picomolar limit of detection (LOD) was achieved as well as the detection in 100% of pooled human plasma. This sensitivity competes with that of ELISA and is better than the one previously obtained with gold or even silver nanospheres for the same target and in similar conditions. Finally, the wide range of colors provided by the AgNPls allowed the design of a multicolor multiplex assay for the simultaneous detection of multiple analytes.

Graphical abstract: Ultra-stable silver nanoplates: efficient and versatile colorimetric reporters for dipstick assays

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2023
Accepted
21 Jun 2023
First published
22 Jun 2023

Nanoscale, 2023,15, 11981-11989

Ultra-stable silver nanoplates: efficient and versatile colorimetric reporters for dipstick assays

M. Retout, B. Gosselin, A. Adrović, P. Blond, I. Jabin and G. Bruylants, Nanoscale, 2023, 15, 11981 DOI: 10.1039/D3NR02378H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements