Hybrid CuSn nanosphere-functionalized Cu/Sn co-doped hollow carbon nanofibers as anode materials for sodium-ion batteries†
Abstract
To strengthen the electrochemical performance of anode materials for sodium-ion batteries, Cu/Sn co-doped hollow carbon nanofibers functionalized by hybrid CuSn nanospheres (CuSn/C@MCNF) were prepared by a simple electrospinning method. The microstructural characteristics of CuSn/C@MCNF confirmed the same doped elements and strong interactions in hybrid CuSn nanospheres and the hollow carbon nanofiber substrate. CuSn/C@MCNF has superior specific capacity, excellent conductivity and high cycling stability. In particular, the doped hollow carbon nanofiber substrate can facilitate Na+ transport and alleviate volume expansion during the process of sodium storage. When applied as an anode material for sodium-ion batteries, CuSn/C@MCNF can deliver a reversible capacity of 340.1 mA h g−1 at a large current density of 1 A g−1 for 1000 cycles and a high-rate capacity of 202.5 mA h g−1 at 4.0 A g−1, all superior to the corresponding Sn-SnOx@MCNF- and MCNF-based electrodes. This work provides a basic idea for future anode materials in high-performance sodium-ion batteries.