Issue 32, 2023

Evaluation of exogenous therapeutic protein activity under confinement and crowding effects

Abstract

Dysfunction of intracellular proteins is frequently associated with various diseases, such as cancer. The exogenous proteins in cells are usually assembled with specific configurations due to physiological confinement/crowding to exhibit novel features in the protein structure, folding or conformational stability, distinguished with their behaviors in buffer solutions. Here, we synthesized exogenous proteins under confined/crowded conditions, to explore protein activity within cells. The findings suggested that the confinement and crowding effects on protein activity are heterogeneous; they showed an inhibitory effect on HRP by decreasing Km from ∼9.5- and ∼21.7-fold and Vmax from ∼6.8- and ∼20.2-fold lower than that of dilute solutions. Interestingly, the effects on Cyt C seem to be more complicated, and crowding exerts a positive effect by increasing Km ∼ 3.6-fold and Vmax ∼ 1.5-fold higher than that of dilute solutions; however, confinement exhibits a negative effect by decreasing Km ∼2.0 and Vmax ∼8.3 times. Additionally, in contrast to traditional nanoparticle-based confinement models, we synthesized a biodegradable nanoparticle to mimic the confined space, and the biggest advantage of this novel model is that the particles can be degraded and thus it can provide more intuitive observations of the properties of the target proteins under confinement and after release. Furthermore, we also evaluated protein activity in different cellular environments, indicating that the exogenous protein activity was closely related to the crowdedness of cellular environments, and the inhibition of protein activity in MDA-MB-231 cancer cells was more obvious than in HEK293 normal cells. Finally, SAXS analysis revealed the correlation between the protein conformation and the different environments. Our work will provide a unique method for precisely assessing whether the target cellular environments are native matrix in which specific exogenous protein drugs are delivered to function or whether they display a therapeutic role, which is of great significance for screening and development of new drugs.

Graphical abstract: Evaluation of exogenous therapeutic protein activity under confinement and crowding effects

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2023
Accepted
14 Jul 2023
First published
19 Jul 2023

Nanoscale, 2023,15, 13450-13458

Evaluation of exogenous therapeutic protein activity under confinement and crowding effects

J. Dai, Z. Peng, S. Shen, B. Huang, L. Ren, J. Liu, C. Chen and G. Chen, Nanoscale, 2023, 15, 13450 DOI: 10.1039/D3NR02968A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements