Issue 47, 2023

Predicting nanocarriers’ efficacy in 3D models with Brillouin microscopy

Abstract

Thanks to their unique nanoscale properties, nanomedicines can overcome some of the shortcomings of conventional therapies. For better predictive screening, it is important to assess their performance in three-dimensional (3D) multicellular tumour spheroids (MCTS) that can recapitulate the physiological barriers found in real tumours. Today, the evaluation of drug delivery nanosystems in MCTS is mainly explored by means of microscopy techniques that are invasive and require fluorescent labels which modify the composition and fate of the carriers. In recent years, a new quantitative microscopy technique based on Brillouin light scattering (BLS) has been proposed that uses the interaction of laser light with picosecond timescale density fluctuations in the sample. Because it is label-free, all-optical and non-destructive, BLS has gained interest in the pharmaceutical and biomedical fields. In this work, we implemented a fast BLS spectrometer and used the Brillouin frequency shift at the center of the MCTS as a quantitative readout for drug efficacy. We first investigated the ability of this setup to quantify drug efficacy in MCTS grown in classical multiwell plates and concluded that the low number of samples available in the multiwells limits the statistical significance of the results. To improve the throughput, we then combined the microscope with agarose microwells designed to fabricate a large number of MCTS and test 50 MCTS in less than a minute. Using this platform, we assessed the efficacy of polymeric nanoparticles (NPs) loaded with a platinum derivative anticancer drug (dichloro(1,2-diaminocyclohexane)platinum(II)) in reducing the growth of colorectal cancer cells (HCT-116) in MCTS. We observe a time- and dose-dependent decrease in the frequency shift, revealing the progressive loss of mechanical integrity in the MCTS. These results demonstrate that BLS probing of MCTS grown in agarose microwells is a promising tool for high-throughput screening of nanocarriers in 3D models.

Graphical abstract: Predicting nanocarriers’ efficacy in 3D models with Brillouin microscopy

Article information

Article type
Paper
Submitted
18 Jul 2023
Accepted
16 Oct 2023
First published
22 Nov 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2023,15, 19255-19267

Predicting nanocarriers’ efficacy in 3D models with Brillouin microscopy

G. Guerriero, A. Viel, V. Feltri, A. Balboni, G. Yan, S. Monnier, G. Lollo and T. Dehoux, Nanoscale, 2023, 15, 19255 DOI: 10.1039/D3NR03502F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements