Design, synthesis and biological evaluation of sulfonylamidines as potent c-Met inhibitors by enhancing hydrophobic interaction†
Abstract
The dysregulation of c-Met kinase has emerged as a significant contributing factor for the occurrence, progression, poor clinical outcomes and drug resistance of various human cancers. In our ongoing pursuit to identify promising c-Met inhibitors as potential antitumor agents, a docking study of the previously reported c-Met inhibitor 7 revealed a large unoccupied hydrophobic pocket, which could present an opportunity for further exploration of structure–activity relationships to improve the binding affinity with the allosteric hydrophobic back pocket of c-Met. Herein we performed structure–activity relationship and molecular modeling studies based on lead compound 7. The collective endeavors culminated in the discovery of compound 21j with superior efficacy to 7 and positive control foretinib by increasing the hydrophobic interaction with the hydrophobic back pocket of c-Met active site.