(Aminoalkyl)diphenylphosphine sulfides: synthesis and application as building blocks in the design of multidentate ligands for cytotoxic Pd(ii) complexes†
Abstract
Amino-functionalized phosphoryl compounds are among the most useful molecular scaffolds in medicinal chemistry, while the potential of their thiophosphorylated analogs, especially those having an alkylamino moiety, is still uncovered. This is mainly due to the lack of convenient synthetic routes to these organophosphorus derivatives. To address this issue, we have suggested the facile approaches to α-(aminomethyl)- and substituted/unsubstituted α-(aminobenzyl)diphenylphosphine sulfides based on either the sequential transformations of (hydroxymethyl)diphenylphosphine sulfide, with the Staudinger reaction of an azide derivative as the key stage, or the addition of Ph2P(S)H to hydrobenzamides followed by the acid hydrolysis. The compounds obtained were reacted with picolinyl chloride to yield functionalized amides which readily underwent direct cyclopalladation, resulting in new representatives of non-classical N-metalated Pd(II) pincer complexes. The latter exhibit promising cytotoxic activity against several human cancer cell lines and apoptosis inducing ability along with the remarkable cytotoxic effects on doxorubicin-resistant cell sublines.