PET-RAFT to expand the surface-modification chemistry of melt coextruded nanofibers†
Abstract
Polymeric nanofibers have been widely used as scaffolds for tissue engineering, drug delivery, and filtration applications, among many others. A high throughput melt coextrusion technique and post-processing functionalization chemistry was recently developed to fabricate functional fibers with nanoscale dimensions. This manuscript expands upon the development of nanofiber modification chemistry by functionalizing fiber mats using a surface-initiated photo-induced electron transfer reversible addition–fragmentation chain transfer (PET-RAFT) polymerization technique. PET-RAFT allows for the fabrication of chemically diverse nanofiber systems initiated with light, preventing the need for high temperature thermal initiators. This manuscript describes the scope of monomers polymerizable via this technique on the surface of poly ε-caprolactone (PCL) nanofibers. The PET-RAFT modification chemistry is used to introduce block copolymers, provide multiple modifications using an orthogonal RAFT-ATRP system, induce spatial photopatterning and to establish cell-adhesive capabilities. The development of surface-initiated PET-RAFT adds an additional tool to a growing strategy for nanofiber functionalization.