Iridium-based electrocatalysts for the acidic oxygen evolution reaction: engineering strategies to enhance the activity and stability
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) for water electrolysis have received tremendous attention due to their immediate response, high proton conductivity, and low ohmic losses and gas crossover rate. The design of high-performance, economical and long-term durable electrocatalysts in an acidic environment is still the bottleneck to realize the large-scale commercialization of PEMWEs. Iridium-based materials represent one of the most promising classes of oxygen evolution reaction (OER) catalysts due to their intrinsic stability in acid media over ruthenium-based counterparts. However, only a few innovative approaches have been developed for synthesizing iridium-based catalysts (IBCs) in the past decade, possibly due to achieving high activity is detrimental to the stability of IBCs. Accordingly, various engineering strategies of optimizing IBCs have been proposed to address this issue, including doping engineering, morphology engineering, crystal phase engineering and support engineering. Herein, a critical overview focusing on different synthesis and modulation strategies of IBCs is presented, based on an in-depth understanding of the relationship between electronic structures, charge redistribution and activity as well as stability of the electrocatalysts. In addition, the unprecedented achievements in PEMWEs are summarized. The reaction mechanisms and future perspectives are critically discussed to inspire more rational design of IBCs toward practical applications.
- This article is part of the themed collection: 2023 Materials Chemistry Frontiers Review-type Articles