The pivotal role of non-covalent interactions in single-molecule charge transport
Abstract
Integrating multidisciplinary efforts from physics, chemistry, biology, and materials science, the field of single-molecule electronics has witnessed remarkable progress over the past two decades thanks to the development of single-molecule junction techniques. To date, researchers have interrogated charge transport across a broad spectrum of single molecules. While the electrical properties of covalently linked molecules have been extensively investigated, the impact of non-covalent interactions has only started to garner increasing attention in recent years. Undoubtedly, a deep understanding of both covalent and non-covalent interactions is imperative to expand the functionality and scalability of molecular-scale devices with the potential of using molecules as active components in various applications. In this review, we survey recent advances in probing how non-covalent interactions affect electron transmission through single molecules using single-molecule junction techniques. We concentrate on understanding the role of several key non-covalent interactions, including π–π and σ–σ stacking, hydrogen bonding, host–guest interactions, charge transfer complexation, and mechanically interlocked molecules. We aim to provide molecular-level insights into the structure–property relations of molecular junctions that feature these interactions from both experimental and theoretical perspectives.
- This article is part of the themed collections: 2023 Materials Chemistry Frontiers Review-type Articles and 2023 Materials Chemistry Frontiers HOT articles