Transition-metal acyclic carbene complexes: building blocks for luminescent, stimuli-responsive, bioactive materials and catalysts†
Abstract
Transition-metal acyclic carbene complexes have received increasing attention in recent years. As acyclic carbene ligands show strong σ-donating properties comparable to N-heterocyclic carbene (NHC) ligands, transition-metal complexes with acyclic carbene ligands also demonstrate outstanding performance and functional properties similar to their NHC counterparts. Therefore, transition-metal acyclic carbene complexes are considered viable alternatives to NHC complexes in the development of metal-based functional materials. As transition-metal acyclic carbene complexes can be prepared from metal isocyanide synthetic precursors, substituents of different electronic and steric natures as well as functional moieties can be readily introduced into acyclic carbene ligands by changing the isocyanide ligand. Moreover, the open structure of acyclic carbene ligands has made their structure and the electronic properties strongly dependent on the substituents as well as the micro-environment. As a result, the functional properties of acyclic complexes can be drastically varied by rational molecular design of the ligands. The environmental sensitivity of the properties of these complexes also made them ideal for the development of stimuli-responsive materials and chemical sensors. In this article, the preparation, electronic properties and design of metal acyclic carbene complexes with different functional properties for the development of advanced materials are described.
- This article is part of the themed collections: 2023 Materials Chemistry Frontiers Review-type Articles and 2023 Materials Chemistry Frontiers HOT articles