Issue 3, 2023, Issue in Progress

A dual-functional catalyst: wood-templated BiVO4–CdS for wood dye wastewater

Abstract

A large quantity of wastewater is released from wood processing, posing a serious pollution problem to the natural environment. Photocatalysis has become a reliable method for effluent purification. In this paper, balsa-templated BiVO4–CdS (BBC) was synthesized by impregnation calcination and chemical deposition using wood residue as a template. Rhodamine B (RhB) is used as a wood colorant and is present in wood processing wastewater. The performance of BBC in photocatalytic degradation with simultaneous hydrogen production was identified using RhB as simulated wood dye wastewater and a sacrificial electron donor. Compared to the BiVO4–CdS without a template, the BBC exhibited higher photocatalytic degradation performance (98.32%), which was attributed to the laminar porous structure of the wood being replicated. Because of the existence of a porous structure, BBC has better adsorption properties, which accelerated photodegradation and the production process of H2. Furthermore, surface modification with CdS nanoparticles formed Z-scheme heterojunctions, which greatly inhibited the photogenerated electron–hole compounds. When RhB provided electrons to BiVO4 and CdS, it was also removed by the oxidation of h+ and ·OH, which were simultaneously generated by balsa-templated BiVO4–CdS. BBC produced hydrogen at a higher rate (61.2 μmol g−1 h−1), realizing dual-functional photocatalysis. Therefore, the results support further development of dual-functional catalysts by the use of wood residues.

Graphical abstract: A dual-functional catalyst: wood-templated BiVO4–CdS for wood dye wastewater

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2022
Accepted
03 Jan 2023
First published
11 Jan 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 1823-1833

A dual-functional catalyst: wood-templated BiVO4–CdS for wood dye wastewater

G. Xia, S. Xiao, J. Su, H. Zhou, Y. Liu and X. Zhu, RSC Adv., 2023, 13, 1823 DOI: 10.1039/D2RA06735H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements