Preparation of STF-loaded micron scale polyurethane polyurea double layer microcapsules and study on the mechanical properties of composites†
Abstract
In this study, we report on a novel and effective approach for the encapsulation of the shear thickening fluid in polyurethane polyurea double layer microcapsules. Under the action of dibutyltin disilicate as a catalyst, CD-MDI reacted with polyethylene glycol to form polyurethane inner shell and reacted with diethylenetriamine to form a polyurea outer shell. The results show that the shear thickening liquid was emulsified using liquid paraffin as a solvent and Span80 as a surfactant to form a lotion similar to water-in-oil. The shear thickened droplets can be stably and uniformly dispersed to a diameter of 100 μm at a rotation speed of 800 rpm min−1. The bilayer shell material achieves a good coating effect on STF, which provides support for strength and stress conduction and improves the compatibility between STF and polyurea matrix. The toughness and impact resistance of the composites were analyzed by a universal testing machine and drop hammer impact tester. Finally, compared with the pure polyurea material, the elongation at break of 2% added amount is increased by 22.70%, and the impact resistance of 1% added amount is the best, which is 76.81 N more than that of the pure specimen.