Issue 16, 2023, Issue in Progress

Exceptional dielectric and varistor properties of Sr, Zn and Sn co-doped calcium copper titanate ceramics

Abstract

Calcium copper titanate (CCTO) powders associated with the chemical formula Ca1−xSrxCu3−yZnyTi4−zSnzO12 (where x, y, z varying from 0 to 0.1) were synthesized via a solid-state reaction route. Dense ceramics (>96% of theoretical density) were obtained by sintering these powders comprising micrometer-sized grains at appropriate temperatures. X-ray powder diffraction studies confirmed the formation of monophasic CCTO cubic phase, with no traceable secondary phases present. The lattice parameter ‘a’ was found to increase on increasing the dopant concentration. The microstructural studies performed on these ceramics confirmed a decrease in mean grain size (18 μm to 5 μm) with the increase in Sr, Zn and Sn doping concentrations as compared to that of undoped CCTO ceramics though they were sintered at the same temperature and duration (1100 °C/15 h). The dielectric studies (dielectric constant (ε′) and the dielectric loss (D)) conducted in a wide frequency range (102–107 Hz) demonstrated an increase in ε′ and a decrease in D on increasing the doping concentration. Impedance analysis (Nyquist plots) performed on these ceramics revealed a significant increase in grain boundary resistance. The highest value of grain boundary resistance (6.05 × 108 Ω) (in fact this value was 100 times higher than that of pure CCTO) was obtained for the composition corresponding to x = y = z = 0.075 and intriguingly the ceramic pertaining to this composition exhibited enhanced ε′ (1.7 × 104) and lower D (0.024) at 1 kHz. Further, these co-doped CCTO ceramics exhibited substantial improvement in breakdown voltages and nonlinear coefficients (α). The temperature independent (30 –210 °C) dielectric response of these samples qualifies them to be suitable dielectric materials for the fabrication of multilayer ceramic chip capacitors.

Graphical abstract: Exceptional dielectric and varistor properties of Sr, Zn and Sn co-doped calcium copper titanate ceramics

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2023
Accepted
23 Mar 2023
First published
03 Apr 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 10476-10487

Exceptional dielectric and varistor properties of Sr, Zn and Sn co-doped calcium copper titanate ceramics

L. Dhavala, R. Bhimireddi, S. Muthukumar V, V. S. Kollipara and K. B. R. Varma, RSC Adv., 2023, 13, 10476 DOI: 10.1039/D3RA00743J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements