Issue 40, 2023, Issue in Progress

Organocatalyzed ring-opening reactions of γ-carbonyl-substituted ε-caprolactones

Abstract

Side-chain-functionalized aliphatic polyesters are promising as functional biodegradable polymers. We have investigated ring-opening reactions of γ-carbonyl-substituted ε-caprolactones (gCCLs) to obtain poly(ε-caprolactone) (PCL) analogues. Organic catalysts and Sn(Oct)2 often used for the ring-opening polymerization (ROP) of ε-caprolactone (CL) have been explored to find the conditions for the formation of polymeric products of gCCLs. We confirmed the consumption of gCCLs in all catalyzed reactions. However, chain propagation hardly occurs, as the propagating species are preferentially transformed to α-substituted five-membered lactones when the substituents are linked by ester or not sterically hindered. Intramolecular cyclization to form thermodynamically stable five-membered lactones releases alcohols and amines, serving as nucleophiles for the subsequent ring opening of other gCCLs. Thus, apparent chain reactions are realized for continuous consumption of gCCLs. The reaction preference remains unchanged independent of the catalysts, although the reactions of the amide-linked gCCLs by acidic catalysts are slightly mitigated. Finally, copolymerization of CL and a gCCL catalyzed by diphenyl phosphate has been investigated, which enables the chain propagation reaction to yield the linear oligomers of PCL analogues containing up to 16 mol% of gCCL units. This study contributes to understanding the chemistry of ring-opening reactions of substituted lactones for designing functional degradable polymers.

Graphical abstract: Organocatalyzed ring-opening reactions of γ-carbonyl-substituted ε-caprolactones

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2023
Accepted
12 Sep 2023
First published
19 Sep 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 27764-27771

Organocatalyzed ring-opening reactions of γ-carbonyl-substituted ε-caprolactones

T. Ota, V. Montagna, Y. Higuchi, T. Kato, M. Tanaka, H. Sardon and K. Fukushima, RSC Adv., 2023, 13, 27764 DOI: 10.1039/D3RA01025B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements