Issue 32, 2023

Cupric coordination compounds with multiple anions: a promising strategy for the regulation of energetic materials

Abstract

To seek new high energetic materials, N-methylene-C-bridged nitrogen-rich heterocycle 1-((4,5-diamino-4H-1,2,4-triazol-3-yl)methyl)-1H-1,2,4-triazol-3,5-diamine (DATMTDA) (2) was first synthesized, and two copper coordination compounds ([Cu12(OH)4(ClO4)4(H2O)4(DATMTDA)12](ClO4)16ยท12H2O (3) and [Cu3(OH)(ClO4)(DATMTDA)3](ClO4)3(NO3) (4)) based on 2 were formed by introducing different anions. These compounds were characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction analysis. The crystal structures of compounds 3 and 4 are similar and crystallize in monoclinic systems with the P21/c space group, while the central copper atoms show different coordination behaviors. However, the structure of compounds 3 and 4 is analogous to a three dimensional structure owing to the O atom of OHโˆ’, forming coordinate bonds with three copper cations. The NBO charge of 2 was calculated using density functional theory to understand its coordination modes. The Hirshfeld surface calculation reveals that 3 and 4 have strong intermolecular interactions. The thermal decomposition processes, non-isothermal kinetics, and enthalpies of formation and sensitivities of these compounds were investigated. By introducing one NO3โˆ’ of compound 4 to replace one ClO4โˆ’ in compound 3, compound 4 shows lower density and lower decomposition peak temperature but lower sensitivity and a higher formation enthalpy than compound 3. The complex 4 possesses an outstanding catalytic effect for the decomposition of AP than that of complex 3. The results illustrate the possibility of introducing various anions into energetic coordination compounds for the regulation of energetic materials.

Graphical abstract: Cupric coordination compounds with multiple anions: a promising strategy for the regulation of energetic materials

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2023
Accepted
10 Jul 2023
First published
25 Jul 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 22549-22558

Cupric coordination compounds with multiple anions: a promising strategy for the regulation of energetic materials

L. Xia, Y. Wang, X. Yang, L. Liang, Z. Li and T. Zhang, RSC Adv., 2023, 13, 22549 DOI: 10.1039/D3RA01739G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements