Issue 25, 2023

Simultaneously enhancing the photovoltaic parameters of ternary organic solar cells by incorporating a fused ring electron acceptor

Abstract

The ternary strategy has been recognized as an effective method to improve the photovoltaic performance of organic solar cells (OSCs). In ternary OSCs, the complementary or broadened absorption spectrum, optimized morphology, and enhanced photovoltaic performance could be obtained by selecting a third rational component for the host system. In this work, a fused ring electron acceptor named BTMe-C8-2F, which possesses a high-lying lowest unoccupied molecular orbital (LUMO) energy level and a complementary absorption spectrum to PM6:Y6, was introduced to a PM6:Y6 binary system. The ternary blend film PM6:Y6:BTMe-C8-2F showed high and more balanced charge mobilities, and low charge recombination. Therefore, the OSC based on the PM6:Y6:BTMe-C8-2F (1 : 1.2 : 0.3, w/w/w) blend film achieved the highest power conversion efficiency (PCE) of 17.68%, with an open-circuit voltage (VOC) of 0.87 V, a short-circuit current (JSC) of 27.32 mA cm−2, and a fill factor (FF) of 74.05%, which are much higher than the binary devices of PM6:Y6 (PCE = 15.86%) and PM6:BTMe-C8-2F (PCE = 11.98%). This work provides more insight into the role of introducing a fused ring electron acceptor with a high-lying LUMO energy level and complementary spectrum for simultaneously enhancing the VOC and JSC to promote the performance of ternary OSCs.

Graphical abstract: Simultaneously enhancing the photovoltaic parameters of ternary organic solar cells by incorporating a fused ring electron acceptor

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2023
Accepted
31 May 2023
First published
09 Jun 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 17354-17361

Simultaneously enhancing the photovoltaic parameters of ternary organic solar cells by incorporating a fused ring electron acceptor

M. Zhang, X. Chen, L. Wang, X. Deng and S. Tan, RSC Adv., 2023, 13, 17354 DOI: 10.1039/D3RA02225K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements