Metal-enhanced fluorescence through conventional Ag-polyethylene glycol nanoparticles for cellular imaging
Abstract
A novel application of conventional Ag nanoparticles (NPs) for metal-enhanced fluorescence (MEF) in cellular imaging is proposed. Different molecular weights of polyethylene glycol (PEG) were tested to determine a suitable spacer on Ag NPs for MEF, and NPs comprising Ag with PEG with a molecular weight of 6000 g (Ag-PEG6k), when present in fluorescein solution, were discovered to cause a 2-fold quantum yield enhancement. For fluorescence imaging of mesenchymal stem cells stained by Alexa Fluor 488, the enhancement factor increased with the Ag-PEG6k NP concentration but decreased with the Alexa Fluor 488 concentration. At 243 parts per billion Ag-PEG6k NPs and 625 parts per million Alexa Fluor 488, the enhancement factor reached its greatest value of over 4.