Issue 25, 2023, Issue in Progress

Electrolytic reduction of CrF3 and Cr2O3 in molten fluoride salt

Abstract

The electrochemical behavior of Cr3+ in molten LiF–NaF–KF (46.5 : 11.5 : 42 mol%) (FLiNaK) was studied by cyclic voltammetry (CV) at 600 °C. With an acceptable solubility and a relatively positive reduction potential of solute Cr3+, the electrolytic reduction of chromium in FLiNaK-CrF3 melt was performed on a tungsten electrode by potentiostatic electrolysis. After electrolysis for 21.5 h, the Cr3+ in the melt was effectively removed as confirmed by ICP-OES and CV. Then, the solubility of Cr2O3 in FLiNaK with ZrF4 additive was analyzed by CV. The results showed that the solubility of Cr2O3 was greatly promoted by ZrF4 and the reduction potential of zirconium is far more negative than that of chromium, which makes the electrolysis of chromium from Cr2O3 material possible. Thus, the electrolytic reduction of Cr in a FLiNaK-Cr2O3-ZrF4 system was further performed by potentiostatic electrolysis on a nickel electrode. After electrolysis for 5 h, a thin layer of chromium metal (with a thickness of c.a. 20 μm) was deposited on the electrode, as confirmed by SEM-EDS and XRD techniques. This study verified the feasibility of electroextraction of Cr from the FLiNaK-CrF3 and FLiNaK-Cr2O3-ZrF4 molten salt systems.

Graphical abstract: Electrolytic reduction of CrF3 and Cr2O3 in molten fluoride salt

Article information

Article type
Paper
Submitted
03 May 2023
Accepted
26 May 2023
First published
06 Jun 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 16889-16898

Electrolytic reduction of CrF3 and Cr2O3 in molten fluoride salt

N. Ji, F. Jiang and H. Peng, RSC Adv., 2023, 13, 16889 DOI: 10.1039/D3RA02926C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements