Issue 33, 2023, Issue in Progress

Analytical study of gold–DNA nano core–shell cloaking characteristics for drug delivery and cancer therapy

Abstract

The cloaking characteristics of biocells can be considered as a factor to determine drug absorption by the tissues. The metal–organic core–shell structure can act as a cloak around the molecules of tissue and can be used as a nanomachine for drug delivery. Thus, we define a ratio of drug absorption based on frequency red-shift and the effective permittivity in the optical spectrum. Here, a cylinder of molecules coated by plasmonic nano core–shells is proposed for measuring the cloaking characteristics of biocells. The overall bandwidth of the proposed cloak for reflectance less than −10 dB is 36%. We check the effect of the filling factors of nanoparticles on the reflection and the frequency response of the tissue. Besides the frequency red-shift and change in the level of reflection, the phase and impedance are extracted. We could obtain the normalized scattering cross-section of 5 dB lower than the cylinder without cloak for the cylinder with a gold–DNA core–shell cloak. Here, we modify the Maxwell-Garnett equation for a cylindrical structure to obtain the effective value of the permittivity for cancer and normal tissues. The results show that obtained permittivity from the simulation has a good match with the calculated permittivity from the Maxwell-Garnet equation. Therefore, this approach can be considered as an efficient method for drug absorption and diagnosis of cancer cells from normal cells.

Graphical abstract: Analytical study of gold–DNA nano core–shell cloaking characteristics for drug delivery and cancer therapy

Article information

Article type
Paper
Submitted
19 May 2023
Accepted
17 Jul 2023
First published
01 Aug 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 23244-23253

Analytical study of gold–DNA nano core–shell cloaking characteristics for drug delivery and cancer therapy

N. Osanloo, V. Ahmadi, M. Naser-Moghaddasi and E. Darabi, RSC Adv., 2023, 13, 23244 DOI: 10.1039/D3RA03338D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements