Issue 32, 2023, Issue in Progress

Impact of surface cooling on the water harvesting efficiency of nanostructured window glass

Abstract

Humans face a severe shortage of fresh water due to economic growth, climate change, overpopulation, and overutilization. Atmospheric water harvesting (AWH) is a promising solution where clean water is collected from the air through various approaches, including dropwise condensation. However, designing surfaces that balance rapid condensation with efficient water removal is challenging. To address this issue, inspired by the efficient water collection mechanisms in the skin of cold-blooded tree frogs, we propose an eco-friendly approach to collect fresh water from cooled window glass. We fabricated various planar and TiO2 nanostructured surfaces including surfaces mimicking a lotus leaf and a hybrid surface mimicking a desert beetle and a cactus, with different wettability levels such as superhydrophilic, hydrophilic, hydrophobic, superhydrophobic, and biphilic. Sub-cooling of glass substrates between 5 and 15 °C using a Peltier device significantly enhanced the condensation process for all surfaces, with modest dependency on surface properties. This cooling temperature regime could be achieved by geothermal cooling methods that consume little energy. To improve visibility for window applications, we developed hydrophobic polymer nanofilm-modified glass substrates using a simple spin-coating technique, and achieved comparable water harvesting efficiency to that of nanostructured substrates. Our study provides insight into the optimal surface structures and cooling temperature for window glass AWH systems that could be used with an underground cooling system.

Graphical abstract: Impact of surface cooling on the water harvesting efficiency of nanostructured window glass

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2023
Accepted
18 Jul 2023
First published
25 Jul 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 22325-22334

Impact of surface cooling on the water harvesting efficiency of nanostructured window glass

Y. Do, M. Ko and Y. K. Lee, RSC Adv., 2023, 13, 22325 DOI: 10.1039/D3RA03433J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements