Improving the decorative performance of UV-curable coatings with iridescent cellulose nanocrystal film
Abstract
Cellulose nanocrystals (CNC) possess remarkable mechanical properties, a high aspect ratio, a large specific surface area, and a unique nanostructure, making them a popular choice in various fields. In this study, a CNC suspension was prepared through acid hydrolysis, and subsequently, a film exhibiting iridescence and chiral nematic structure was formed on the cured UV-WA surface via evaporation-induced self-assembly. The mean diameter and length of CNC were determined to be 25.1–33.3 nm and 281.3–404.2 nm, respectively, through transmission electron microscope analysis. The experimental results revealed that the color of the film significantly changes with variations in the CNC suspension concentration. Notably, the formation of the iridescent film is dependent on the concentration of CNC, with concentrations between 1.2% and 2.9% being optimal, and the aspect ratio of the CNC nanoparticles being around 11.3. X-ray diffraction analysis confirmed that the CNC nanoparticles possess the same crystal structure as microcrystalline cellulose (cellulose I). Fourier transform infrared spectroscopy revealed that the CC bond present in the liquid UV-curable coating disappeared upon UV irradiation. The performance of the CNC iridescent film, with varying thickness, was evaluated using UV-vis spectroscopy. The thermogravimetric analysis results indicate that the addition of CNC enhances the membrane's thermal stability and heat resistance. The results indicate that as the thickness of the CNC iridescent film increases, the corresponding UV-vis spectra display a redshift. The UV-WA/CNC shows potential in the field of decoration and establishing a straightforward, cost-effective, and efficient method for producing photonic materials with structural colors.