Issue 38, 2023, Issue in Progress

Sodium phosphate solid base catalysts for production of novel biodiesel by transesterification reaction

Abstract

The efficient sodium phosphate (Na3PO4) solid base catalysts were prepared and applied in the production of novel biodiesel: ethylene glycol monomethyl ether monolaurate (EGMEML) by transesterification. The calcined sodium phosphate catalysts (NaP-T) were characterized using thermogravimetry analysis (TG-DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) and so on. The effects of calcination temperature of Na3PO4 and main reaction parameters such as molar ratio of ethylene glycol monomethyl ether (EGME) to methyl laurate (ML), dosage of catalyst, reaction time and temperature on the yield of EGMEML were examined. The results showed that the maximum yield of EGMEML could reach 90% under 120 °C within 4 h and 5 wt% of Na3PO4 calcined at 400°, and the catalysts displayed good stability and recovery. In addition, the kinetics of transesterification reaction was explored and the results showed that the transesterification reaction followed 1st order kinetics when a large excess of EGME was used, the activation energy (Ea) was found to be 40.2 kJ mol−1.

Graphical abstract: Sodium phosphate solid base catalysts for production of novel biodiesel by transesterification reaction

Article information

Article type
Paper
Submitted
28 May 2023
Accepted
29 Aug 2023
First published
06 Sep 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 26700-26708

Sodium phosphate solid base catalysts for production of novel biodiesel by transesterification reaction

Z. Zhao, W. Wu, L. Jia and X. Guo, RSC Adv., 2023, 13, 26700 DOI: 10.1039/D3RA03565D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements