Issue 33, 2023, Issue in Progress

Redox active pyridine-3,5-di-carboxylate- and 1,2,3,4-cyclopentane tetra-carboxylate-based cobalt metal–organic frameworks for hybrid supercapacitors

Abstract

In the pursuit of developing superior energy storage devices, an integrated approach has been advocated to harness the desirable features of both batteries and supercapacitors, particularly their high energy density, and high-power density. Consequently, the emergence of hybrid supercapacitors has become a subject of increasing interest, as they offer the potential to merge the complementary attributes of these two technologies into a single device, thereby surpassing the limitations of conventional energy storage systems. In this context the Metal–Organic Frameworks (MOFs), consisting of metal centers and organic linkers, have emerged as highly trending materials for energy storage by virtue of their high porosity. Here, we investigate the electrochemical performance of cobalt-pyridine-3,5-di-carboxylate-MOF (Co-PDC-MOF) and cobalt-1,2,3,4-cyclopentane tetra-carboxylate-MOF (Co-CPTC-MOF). In the setup involving the analysis of Co-PDC-MOF and Co-CPTC-MOF materials, a configuration comprising three electrodes was utilized. Drawing upon the promising initial properties of CPTC, a battery device was fabricated, comprising Co-CPTC-MOF, and activated carbon (AC) electrodes. Retaining a reversible capacity of 97% the device showcased impressive energy and power density of 20.7 W h g−1 and 2608.5 W kg−1, respectively. Dunn's model was employed, to gain deeper insights into the capacitive and diffusive contributions of the device.

Graphical abstract: Redox active pyridine-3,5-di-carboxylate- and 1,2,3,4-cyclopentane tetra-carboxylate-based cobalt metal–organic frameworks for hybrid supercapacitors

Article information

Article type
Paper
Submitted
10 Jun 2023
Accepted
12 Jul 2023
First published
28 Jul 2023
This article is Open Access
Creative Commons BY license

RSC Adv., 2023,13, 22936-22944

Redox active pyridine-3,5-di-carboxylate- and 1,2,3,4-cyclopentane tetra-carboxylate-based cobalt metal–organic frameworks for hybrid supercapacitors

M. Z. Iqbal, M. Shaheen, A. Khizar, S. Aftab, Z. Ahmad, A. M. Tawfeek and S. Sharif, RSC Adv., 2023, 13, 22936 DOI: 10.1039/D3RA03889K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements