Issue 42, 2023, Issue in Progress

Polyethyleneimine-assisted formation of Ag–SiO2 hybrid microspheres for H2O2 sensing and SERS applications

Abstract

Herein, we report a simple, cost-effective, and eco-friendly approach for producing polyethyleneimine (PEI)-assisted silver nanoparticle-supported silica microspheres through evaporation-induced assembly (EIA). The silica–PEI microspheres obtained through EIA consisted of highly trapped PEI molecules owing to their electrosorption onto oppositely charged silica colloids. The trapped PEI molecules in the microspheres played a crucial role in linking silver ions to form silver ion–PEI complexes, which were then reduced to form silver nanoparticles. Further, the complex interactions between PEI and silica colloids led to enhanced porosity in the microspheres, enabling the efficient adsorption of Ag ions. The characterization of the Ag–SiO2 microspheres was carried out using various techniques, including field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and Fourier transform infrared (FTIR) spectroscopy, which confirmed the successful formation of Ag nanoparticles on microspheres, and a plausible formation mechanism is elucidated. The Ag–SiO2 microspheres exhibited good sensing properties for hydrogen peroxide (H2O2), with an estimated limit of detection of 1.08 mM and a sensitivity of 0.033 μA mM−1 mm−2. The microspheres were also used as a surface-enhanced Raman scattering (SERS) substrate, which demonstrated high sensitivity in detecting rhodamine 6G down to a concentration of 2 × 10−6 M. The present approach elucidates a promising alternative to conventional methods that face challenges, such as scalability issues, complex and cumbersome synthesis procedures, and the use of strong reducing agents. With the potential for industrial-level scalability, this method offers a viable strategy for producing Ag–SiO2 microspheres with possible applications in biomedical and sensing technologies.

Graphical abstract: Polyethyleneimine-assisted formation of Ag–SiO2 hybrid microspheres for H2O2 sensing and SERS applications

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2023
Accepted
15 Sep 2023
First published
04 Oct 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 29086-29098

Polyethyleneimine-assisted formation of Ag–SiO2 hybrid microspheres for H2O2 sensing and SERS applications

S. Mehta, J. Bahadur, D. Sen, D. Nechiyil, H. Bhatt, N. Kumar and J. Prakash, RSC Adv., 2023, 13, 29086 DOI: 10.1039/D3RA04095J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements