Issue 41, 2023, Issue in Progress

Enhancing acid orange II degradation in ozonation processes with CaFe2O4 nanoparticles as a heterogeneous catalyst

Abstract

This study used CaFe2O4 nanoparticles as a catalyst for ozonation processes to degrade Acid Orange II (AOII) in aqueous solution. The study compared heterogeneous catalytic ozonation (CaFe2O4/O3) with ozone treatment alone (O3) at different pH values (3–11), catalyst dosages (0.25–2.0 g L−1), and initial AOII concentrations (100–500 mg L−1). The O3 alone and CaFe2O4/O3 systems nearly completely removed AOII's color. In the first 5 min, O3 alone had a color removal efficiency of 75.66%, rising to 92% in 10 min, whereas the CaFe2O4/O3 system had 81.49%, 94%, and 98% after 5, 10, and 20 min, respectively. The O3 and CaFe2O4/O3 systems degrade TOC most efficiently at pH 9 and better with 1.0 g per L CaFe2O4. TOC removal effectiveness reduced from 85% to 62% when the initial AOII concentration increased from 100 to 500 mg L−1. The study of degradation kinetics reveals a pseudo-first-order reaction mechanism significantly as the solution pH increased from 3 to 9. Compared to the O3 alone system, the CaFe2O4/O3 system has higher k values. At pH 9, the k value for the CaFe2O4/O3 system is 1.83 times higher than that of the O3 alone system. Moreover, increasing AOII concentration from 100 mg L−1 to 500 mg L−1 subsequently caused a decline in the k values. The experimental data match pseudo-first-order kinetics, as shown by R2 values of 0.95–0.99. AOII degradation involves absorption, ozone activation, and reactive species production based on the existence of CaO and FeO in the CaFe2O4 nanocatalyst. This catalyst can be effectively recycled multiple times.

Graphical abstract: Enhancing acid orange II degradation in ozonation processes with CaFe2O4 nanoparticles as a heterogeneous catalyst

Article information

Article type
Paper
Submitted
10 Jul 2023
Accepted
15 Sep 2023
First published
02 Oct 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 28753-28766

Enhancing acid orange II degradation in ozonation processes with CaFe2O4 nanoparticles as a heterogeneous catalyst

H. T. Van, V. H. Hoang, T. C. Luu, T. L. Vi, L. T. Q. Nga, G. S. I. J. Marcaida and T. Pham, RSC Adv., 2023, 13, 28753 DOI: 10.1039/D3RA04553F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements