Issue 44, 2023

Understanding the cation exchange affinity in modified-MMT catalysts for the conversion of glucose to lactic acid

Abstract

This study investigated the exchange affinity of Fe3+, Cu2+, and Zn2+ cations in sulfuric acid-purified montmorillonite (S-MMT) to enhance Lewis acid sites and subsequently improve the catalytic conversion of glucose to lactic acid. XRD analysis suggested the successful cation exchange process, leading to structural expansion of the resultant cation exchanged-MMTs (CE-MMTs). XRF and TGA indicated that Zn2+ had the highest exchange affinity, followed by Cu2+ and then Fe3+. This finding was further supported by the results of TPD-NH3 analysis and pyridine-adsorption test, which demonstrated that Zn-MMT had the highest total acid sites (TAS) and the ratio of Lewis acid-to-Brønsted acid surface site (LA/BA). These results indicated dominant presence of Lewis acid sites in Zn-MMT due to the higher amount of exchanged Zn2+ cations. Consistently, time-dependent catalytic studies conducted at 170 °C showed that a 7 h-reaction generated the highest lactic acid yield, with the catalytic performance increasing in the order of Fe-MMT < Cu-MMT < Zn-MMT. The study also observed the impact of adding alcohols as co-solvents with water at various ratios on the conversion of glucose to lactic acid catalysed by Zn-MMT. The addition of ethanol enhanced lactic acid yield, while methanol and propanol inhibited lactic acid formation. Notably, a water-to-ethanol ratio of 30 : 70 v/v% emerged as the optimal solvent condition, resulting in ca. 35 wt% higher lactic acid yield compared to using water alone. Overall, this study provides valuable insights into the cation exchange affinity of different cations in MMT catalysts and their relevance to the conversion of glucose to lactic acid. Furthermore, the incorporation of alcohol co-solvent presents a promising way of enhancing the catalytic activity of CE-MMTs.

Graphical abstract: Understanding the cation exchange affinity in modified-MMT catalysts for the conversion of glucose to lactic acid

Supplementary files

Article information

Article type
Paper
Submitted
27 Jul 2023
Accepted
07 Oct 2023
First published
26 Oct 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 31263-31272

Understanding the cation exchange affinity in modified-MMT catalysts for the conversion of glucose to lactic acid

S. M. S. N. Shikh Zahari, N. F. I. Che Sam, K. M. H. Elzaneen, M. S. Ideris, F. W. Harun and H. H. Azman, RSC Adv., 2023, 13, 31263 DOI: 10.1039/D3RA05071H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements