Issue 41, 2023, Issue in Progress

Cu-doped SnO2 nanoparticles: size and antibacterial activity investigations

Abstract

Nowadays, the use of self-cleaning surfaces is increasing globally, especially after the COVID-2019 pandemic, and the use of nanoparticles has been shown as a plausible option for this purpose. In the present study, Cu-doped SnO2 nanocrystals were successfully synthesized (in the copper content range of 0–30 mol%) using the polymeric precursor method. The structural, morphological, vibrational, and antibacterial activity were carefully studied to unveil the effect of copper ions on the properties of the hosting matrix, aiming at maximizing the usage of Cu-doped SnO2 nanocrystals. The results show fabrication of nanoparticles near their respective exciton Bohr diameter (5.4 nm for SnO2), however, monophasic SnO2 was observed up to 15 mol%. Above this limit, a secondary CuO phase was observed, as shown by the assessed X-ray diffraction (XRD), Fourier transform infrared, and Raman spectroscopy data. Furthermore, the redshift of the primary A1g vibrational mode of SnO2 is successfully described using the phonon-confinement model, demonstrating a good relationship between the Raman correlation length (L) and the crystallite size (〈D〉), the latter determined from XRD. Regarding the antibacterial activity, assessed via the disc-diffusion testing method (DDTM) while challenging two bacterial species (S. aureus and E. coli), our results suggest a rapid diffusion of the nanoparticles out of the paper disc, with a synergistic effect credited to the Sn1−xCuxO2–CuO phases contributing to the inhibition of the bacteria growth. Moreover, the DDTM data scales with cell viability, the latter analyzed using the Hill equation, from which both lethal dose 50 (LD50) and benchmark dose (BMD) were extracted.

Graphical abstract: Cu-doped SnO2 nanoparticles: size and antibacterial activity investigations

Article information

Article type
Paper
Submitted
27 Jul 2023
Accepted
18 Sep 2023
First published
27 Sep 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 28482-28492

Cu-doped SnO2 nanoparticles: size and antibacterial activity investigations

F. F. H. Aragón, L. Villegas-Lelovsky, J. I. Castillo-Llanos, C. M. Soncco, J. L. Solis, G. H. Peralta-Alarcón, D. G. Pacheco-Salazar and P. C. Morais, RSC Adv., 2023, 13, 28482 DOI: 10.1039/D3RA05089K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements