Issue 40, 2023

Microwave assisted one-pot access to pyrazolo quinolinone and tetrahydroisoxazolo quinolinone derivatives via T3P®-DMSO catalysed tandem oxidative–condensation reaction

Abstract

A new approach for the synthesis of two important annulated pyrazolo quinolinone and tetrahydroisoxazolo quinolinone derivatives from multicomponent reactions was achieved by using T3P®-DMSO-catalysed reactions of stable alcohols, cyclic 1,3-dicarbonyl compounds and amino derivatives of phenyl pyrazoles and isoxazole and has been reported for the first time. This reaction occurred via a tandem oxidative–condensation reaction under microwave irradiation and notable characteristics of this protocol are MCR reactions, shorter reaction time, less waste creation, ease of workup, stable precursors, broad substrate scope and functional group tolerance.

Graphical abstract: Microwave assisted one-pot access to pyrazolo quinolinone and tetrahydroisoxazolo quinolinone derivatives via T3P®-DMSO catalysed tandem oxidative–condensation reaction

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
02 Aug 2023
Accepted
18 Sep 2023
First published
03 Oct 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 28362-28370

Microwave assisted one-pot access to pyrazolo quinolinone and tetrahydroisoxazolo quinolinone derivatives via T3P®-DMSO catalysed tandem oxidative–condensation reaction

D. Gowda, K. B. Harsha, V. G. Shalini, S. Rangappa and K. S. Rangappa, RSC Adv., 2023, 13, 28362 DOI: 10.1039/D3RA05235D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements